

Μηχανικές και χημικές διεργασίες επεξεργασίας κυτταρίνης από λιγνοκυτταρινούχα βιομάζα προς παραγωγή (νανο)κυτταρίνης

Ελένη Ψώχια, Αντιγόνη Μαργέλλου, Κωνσταντίνος Τριανταφυλλίδης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Τμήμα Χημείας, ΑΠΘ

Επιστημονική Ημερίδα: "Ανάπτυξη καινοτόμων ρητινών και προϊόντων

σύνθετης ξυλείας ενισχυμένων με νανο-κυτταρίνη" CELL4GLUE

Cell4glue Overview

📕 Κυτταρίνη

Κυτταρίνη

- Το πιο άφθονο φυσικό πολυμερές
- Λιγνοκυτταρινούχα βιομάζα, μύκητες, βακτήρια
- Κύριο συστατικό της λιγνοκυτταρινούχα
 βιομάζας
- b-1,4- γλυκοζιτικούς δεσμούς
- Βιοαποικοδομήσιμο

Εφαρμογές

- Υλικά Συσκευασίας
- Συγκολλητικές ρητίνες
- 🖌 Βϊοϊατρική
- 🗸 Σύνθετα φιλμ
- Βιοσένσορες

Νανοκυτταρίνη

- **Cellulose nanofibers**
- Cellulose nanocrystals
- Bacterial nanocellulose

- ✓ High stiffness
- ✓ Transparency
- ✓ High tensile strength
- High elastic modulus
- Light weight
- ✓ Low density

Παραλαβή καθαρής κυτταρίνης με Bleaching

Μεθοδολογίες

- NaClO₂ / CH₃COOH
- NaOH/ H₂O₂ Μεγάλες ποσότητες διαλύτών, χρονοβόρα μέθοδος
- HCOOH/CH₃COOH Ανεπιτυχής απομάκρυνση λιγνίνης

NaClO₂/CH₃COOH

Bleaching Liquid

Bleached Κυτταρίνη Ανάκτηση (α) ως προς την επεξεργασμένη βιομάζα α=99%

Παραλαβή καθαρής κυτταρίνης με Bleaching

Παραλαβή κυτταρίνης μετά το bleaching

Παραλαβή καθαρής κυτταρίνης με Bleaching

Χαρακτηρισμοί Καθαρής Κρυσταλλικής Κυτταρίνης

- ✓Περίθλαση Ακτίνων Χ (XRD)
- ✓Φασματοσκοπία Υπερύθρου (FT-IR)
- ✓Θερμοσταθμική Ανάλυση (TGA)
- ✓Ηλεκτρονική Μικροσκοπία Σάρωσης (SEM)

Περίθλαση Ακτίνων Χ (XRD)

Παραλαβή καθαρής κρυσταλλικής κυτταρίνης από την υδροθερμικά επεξεργασμένη βιομάζα (bleaching)

Περίθλαση Ακτίνων Χ (XRD)

Παραλαβή καθαρής κρυσταλλικής κυτταρίνης από την υδροθερμικά επεξεργασμένη βιομάζα (bleaching)

Περίθλαση Ακτίνων Χ (XRD)

- BHT65: Lignocel 170 °C, 0.25% v/v H2SO₄, 15 min
- BHT65_B: Lignocel 220 °C,15 min_bleached cellulose
- BHT65_0_B_11: Lignocel 170,15_0.25% v/v H2SO₄, Organosolv
- BHT65_O_B_11_b: Lignocel 170,15_0.25% v/v H2SO₄, Organosolv
- BHT65_0_Bs_06: Lignocel 170,15_0.25% w/v H2SO4, Organosolv .25% v/v H2SO₄
- BHT65_0_Bs_06_b: Lignocel 170,15_0.25% w/v H2SO4,
 Organosolv 0.25% v/v H2SO₄

Κυτταρίνη	Δείκτης κρυσταλλικότητας (%)	
Avicel	84	
Υδροθερμική κατεργασία, Η₂Ο, 220 °C, 15 min		
Lignocel	76.8	
Κλαδ. Λεύκας	74.3	
Κλαδ. Ελιάς	72.9	
Άχυρα σιταριού	73.7	
Υδροθερμική κατεργασία, Η₂Ο, 220 °C, 15 min+ Εκχύλιση επιφ. λιγνίνης		
Lignocel	72.8	
Κλαδ. Λεύκας	80.7	
Κλαδ. Ελιάς	72.1	
Άχυρα σιταριού	74.1	
Υδροθερμική κατεργασία, 0.25%ν/ν Η₂SO₄, 170 °C, 15 min		
Lignocel	70.3	
Κλαδ. Λεύκας	64.3	
Κλαδ. Ελιάς	77.9	
Άχυρα σιταριού	60.1	
Organosolv, EtOH/H ₂ O=60/40, 190 °C, 60 min		
Lignocel	66.4	
Κλαδ. Λεύκας	66.8	
Κλαδ. Ελιάς	62.5	
Άχυρα σιταριού	59.5	

- Αύξηση κρυσταλλικότητας μετά το bleaching τόσο ως
 προς τις αρχικές όσο ως και προς τις επεξεργασμένες
 βιομάζες
- Εμφανίζονται όλες οι χαρακτηριστικές κορυφές της κυτταρίνης
- Επιτυχής απομάκρυνση λιγνίνης

Φασματοσκοπία υπερύθρου (FT-IR)

Before Bleaching

Lignocel_220,15_EtOH extr_b Lignocel_220,15_b Lignocel 170,15, 0.25% v/v H2SO4 Lignocel_org_b - Lignocel 11 i i (%) Transmittance -OH -OH: -C=O 4000 3500 2500 2000 1500 3000 1000 500 Wavenumber (cm⁻¹)

 1737 cm⁻¹: ελάττωση της έντασης της απορρόφησης-ημικυτταρίνης στο τελικό προϊόν
 1515 cm⁻¹ και 1240 cm⁻¹ (παρουσία ημικυτταρίνης): μετά το bleaching εξαφάνιση των απορροφήσεων - επιτυχής απομάκρυνση λιγνίνης από βιομάζα

✓ 1634 cm⁻¹ -1640 cm⁻¹(OH ομάδες της κυτταρίνης)[:]: αύξηση της έντασης των απορροφήσεων -αύξηση περιεχόμενης κυτταρίνης

Επιτυχής παραλαβή καθαρής κρυσταλλικής κυτταρίνης μετά το bleaching

After Bleaching

Χαρακτηρισμός Κρυσταλλικής Κυτταρίνης

TGA

- Υδροθερμικά κλάσματα: μεγαλύτερες θερμοκρασίες
 (θ) έναρξης της αποικοδόμησης και μεγαλύτερο
 ποσοστό υπολειμματικής μάζας συγκριτικά με την
 Avicel
- αύξηση της θ των υδροθερμικών → αύξηση της
 θ έναρξης της θερμικής αποικοδόμησης
- Μεγαλύτερη θερμική σταθερότητα των bleached
 κυτταρινών συγκριτικά με την Avicel

Ινώδης μορφολογία με πολύ «καθαρές»
 επιφάνειες μετά το bleaching απομάκρυνση λιγνίνης

(EE1 1.3): Παραγωγή νανοδομών κυτταρίνης και επιφανειακή τροποποίηση

🔚 Μηχανική προκατεργασία της εμπορικής κρυσταλλικής κυτταρίνης σε πλανητικό σφαιρόμυλο

Συνθήκες άλεσης

- 15 gr + 15 gr Avicel σε δύο δοχεία των 250 ml
- 50 μεταλλικές σφαίρες σε κάθε δοχείο
- 2h, 250 rpm με 30 min pause κάθε 1h

Κατεργασία αλεσμένης κυτταρίνης σε high shear blending, 15 min

- Δεν έδωσε σταθερό κολλοειδές αιώρημα
- Παρατηρήθηκε μείωση του μεγέθους των σωματιδίων
- Αμορφοποίηση κυτταρίνης μετά την άλεση

Εικόνα 1.3-5: Εικόνα SEM εμπορικής μικροκρυσταλλικής κυτταρίνης αλεσμένης σε πλανητικό σφαιρόμυλο για 2h

Παραγωγή νανοϊνιδίων κυτταρίνης (CNFs) με μηχανικές μεθόδους

Ultrasonication (NCS)

- Παρασκευή κολλοειδών αιωρημάτων νανοκυτταρίνης και μελέτη της επίδρασης στη *συγκέντρωση* και στο μέγεθος των NCs των εξής παραγόντων:
- Αρχική συγκέντρωση αιωρήματος κυτταρίνης (2% και 5% w/v)
- Χρόνος (30 min, 1h, 2h,3h, 4h)
- Ισχύς κατεργασίας (30% Ampl, 50% Ampl, 80% Ampl)
- Τύπος κατεργασίας (Pulse, Continuous)

Χαρακτηρισμοί:

- Particle Size Distribution (PSD), Zeta Potential
- XRD
- ✓ SEM
- ✓ TEM

Ultrasonication (NCS)

✓ Successful production of cellulose nanopartricles

TEM

Παραγωγή νανοϊνιδίων κυτταρίνης (CNFs) με μηχανικές μεθόδους

High Shear Blender (NCB)

Χαρακτηρισμοί:

- ✓ Particle Size Distribution (PSD)
- Zeta Potential
- XRD
- ✓ SEM
- ✓ TEM

High shear blender (NCB)

XRD

SEM

- Fiber length: several µm
- Width: ~150-600 nm
- Sheet like flakes/agglomerates barrier properties

 Successful production of cellulose nanopartricles

Παραγωγή νανοκρυσταλλικής κυτταρίνης (CNCs) με όξινη υδρόλυση

Acid Hydrolysis of Avicel with H₂SO₄ 64 % wt

Cellulose Nanocrystals (CNCs) (Acid hydrolysis, 64% wt H₂SO₄)

Παραγωγή CNFs και CNCs από την κυτταρίνη που παραλήφθηκε από τις αγροτικές βιομάζες

Νανοϊνίδια Κυτταρίνης (CNFs)

Sonication 1h, 50% Ampl , 50% pulse rate

- 1. NCS-O_Bs (από Beechwood)
- 2. NCS-O_Pops (από Poplar)
- 3. NCS-O_Ws ($\alpha\pi \dot{o}$ wheat straw)
- 4. NCS-O_Os (από olive)

Νανοκρύσταλλοι κυτταρίνης (CNCs) Όξινη υδρόλυση με 64% wt H_2SO_4

CNCs Avicel

CNCs

Poplar

CNCs

Straw

CNCs Olive

Παραγωγή CNFs και CNCs από την κυτταρίνη που παραλήφθηκε από τις αγροτικές βιομάζες

Χαρακτηρισμοί

✓ FT-IR

XRD

✓ Particle Size Distribution (PSD)

Zeta Potential

Όλες οι χαρακτηριστικές
 απορροφήσεις της κυτταρίνης διατήρηση δομής

Όλες οι χαρακτηριστικές
 κρυσταλλικές κορυφές της
 κυτταρίνης

Παραγωγή CNFs και CNCs από την κυτταρίνη που παραλήφθηκε από τις αγροτικές βιομάζες

PSD

-Μέγεθος σωματιδίων **0.3- 3.5 μm** -NCS_O_Ws: έως και 8-9 μm- δημιουργία συσσωματωμάτων

✓ Επιτυχής παραγωγή
 νανοκρυσταλλικής κυτταρίνης
 ✓ Μέγεθος σωματιδίων 80-900 nm
 ✓ Κύριες κορυφές στα 100-250 nm

✓ Μεγάλες απόλυτες τιμές διαφοράς
 δυναμικού- Σταθερά κολλοειδή
 αιωρήματα

Επιφανειακή Τροποποίηση

Α) Επιφανειακή τροποποίηση με σιλάνια:

- 1. 3-(Aminopropyl)triethoxysilane (APTES) (στις ρητίνες UF)
- 2. 1H,1H,2H,2H-perfluorooctyltriethoxy silane (στις ρητίνες MF)
- 3. (Pentafluorophenyl)triethoxy silane-to be done (στις ρητίνες MF)

Β) Χαρακτηρισμοί τροποποιημένης κυτταρίνης

- 1. FT-IR
- 2. Elemental Analysis
- 3. SEM/EDS
- 4. XRD

CH ₃ CH ₂ O	
CH ₃ CH ₂ O-Si	`NH₂
CH₃CH₂O	
(3-Aminopropyl)triethoxy silane	

⁽Pentafluorophenyl)triethoxy silane

⁽¹H,1H,2H,2H-Perfluorooctyl)triethoxy silane

Επιφανειακή Τροποποίηση με APTES

Πλύσεις με

απιονισμένο νερό

- 1.
- 2. Cellulose :APTES (1:4)
- **3.** CH₃COOH μέχρι pH=4

κυτταρίνης (MCC:APTES)

μετά από ξήρανση σε RT

για 72 h

Επιφανειακή Τροποποίηση με ΑΡΤΕS

FT-IR

- Εμφάνιση νέας κορυφής στα 1055 cm⁻¹ N-H
 bending vibration of primary amine
- Εμφάνιση νέας κορυφής στα 780 cm⁻¹, Si-O-C

 bending
- Στενότερη κατανομή στα ~3500 cm⁻¹- λιγότερες
 ελεύθερες -OH ομάδες μετά την τροποποίηση
- ✓ Αύξηση έντασης απορρόφησης στα 1100 cm⁻¹,
 χαρακτηριστική των Si-O-CH₃ ομάδων

Spectrum 7 Wt% σ 0 53.6 0.3 C 45.1 0.3 N 1.3 0.4 S 0.0 0.0 Powered by Tru-Q® 5 6 5 4 4 6 8 keV

EDS

Elemental Analysis

XRD

SEM

Συμπεράσματα

- Επιτυχής απομόνωση και παραλαβή καθαρής κρυσταλλικής κυτταρίνης από 4 διαφορετικές πηγές βιομάζες(οξιά, λεύκα, ελιά, άχυρο) έπειτα από βελτιστοποίηση
- Βελτιστοποίηση και παραγωγή νανοϊνιδίων κυτταρίνης με χαμηλού κόστους μηχανικές μεθόδους (ultrasonication, high shear blender)
- Βελτιστοποίηση και παραγωγή νανοϊνιδίων και νανοκρυστάλλων κυτταρίνης από εμπορικές και αγροτικές πηγές με υποσχόμενες φυσικοχημικές ιδιότητες
- Επιτυχής τροποποίηση της κυτταρίνης και των παραγώγων της με σιλάνια

Η εργασία υλοποιείται στο πλαίσιο της Δράσης «Ειδικές Δράσεις «Υδατοκαλλιέργειες» - «Βιομηχανικά Υλικά» - «Ανοιχτή Καινοτομία στον Πολιτισμό» που συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης (ΕΤΠΑ) της Ευρωπαϊκής Ένωσης και εθνικούς πόρους μέσω του Ε.Π. Ανταγωνιστικότητα, Επιχειρηματικότητα & Καινοτομία (ΕΠΑνΕΚ 2014-2020) (κωδικός έργου: Τ6ΥΒΠ-00341)

Group

- Dr. Antigoni Margellou
- Dr. Dimitrios Gkiliopoulos
- Dr. Dimitrios Giannakoudakis
- Dr. Sophia Tsoumachidou
- Xristina Pappa, PhD student
- Kyriazis Rekos, PhD student
- Soultana Ioannidou, PhD student
- Eleni Salonikidou, PhD student
- Georgios lakovou, PhD student
- Zoi-Lina Koutsogianni, PhD student
- Stylianos Torofias, MSc
- Petros Soldatos, PhD student
- Alexandros Ioannis Karras, MSc
- Athanasia Kotsaridou, PhD student

Collaborators

- E. Athanasiadou, E. Karagiannidis (CHIMAR)
- N. Kehagias (Nanotypos)
- D. Bikiaris (AUTH)
- A. Koutinas (AUA)

Thank you for your attention!