

Κατασκευή υδρόφοβων και αντιμικροβιακών επιφανειών

Dr. Nikos Kehagias, CTO

CELL4GLUE Κωδικός έργου: Τ6ΥΒΠ-00341

Outline

Ποιοι είμαστε

Εταιρεία έρευνας και τεχνολογίας δημιουργήθηκε το 2012 στην Θεσσαλονίκη

- 🗸 Σχεδιασμός και κατασκευή
- Ανάπτυξη προϊόντων
- Πιλοτική παραγωγή
- Συμβεβλημένη έρευνα και ανάπτυξη
- Συνεργατικά ερευνητικά προγράμματα
- ✓ Εκτυπώσεις ασφαλείας

Research intense

- 2.5Μ€ τα τελευταία 4 χρόνια.
- Συμμετοχή σε 8 Εθνικά ερευνητικά προγράμματα
- Συμμετοχή σε 4 H2O2O EU προγράμματα (BIOMAC, ODYSSEY, In2Sight, PULSE)

Ελέγχοντας την επιφανειακή τραχύτητα...

Η φυσική δομή και η αλληλεπίδραση μιας επιφάνειας με τους υποδοχείς ανθρώπινων αισθήσεων έχει τεράστιο αντίκτυπο στην αντίληψη της αφής, της αίσθησης και της γεύσης.

Έμπνευση

Δημιουργώντας μίκρο/νάνο τοπογραφίες στη επιφάνεια ενός υλικό μπορούμε να προσδώσουμε χαρακτηριστικές ιδιότητες και να δημιουργήσουμε προστιθέμενης αξίας προϊόντα...

Μεθοδολογία CELL4GLUE

- > Σχεδιασμός υδρόφοβων επιφανειών
- \succ Κατασκευή μήτρας λιθογραφίας
- Αναπαραγωγή μήτρας μέσω νανοεκτυπωτικής λιθογραφίας
- > Εφαρμογή σε προϊόντα σύνθετης ξυλείας

Μεθοδολογία CELL4GLUE

Lotus leaf

Σχεδιασμός υδρόφοβων επιφανειών

Καταστάσεις διαβροχής

Bhushan, B.; Nosonovsky, M., The rose petal effect and the modes of superhydrophobicity. Philosophical transactions. Series A 2010, 368 (1929), 4713-28.

計

Μίκρο ή νάνο

Geometrical parameters						
Surface Structure	Width	Pitch	Height	r	f	
Squared pillars	40 µm	115 µm	40 µm	1.50	0.09	
Cylindrical pillars	40 µm	115 µm	40 µm	1.48	0.09	
Honeycomb pillars	5 µm	500 nm	800 nm	2.04	0.88	
Honeycomb lines	5 µm	500 nm	800 nm	2.04	0.12	
Nanopillars	500 nm	750 nm	700 nm	3.25	0.40	
Nanospikes	200-600 nm	Random	1-3 µm			

Ξηρή εγχάραξη πυριτίου (Μήτρα λιθογραφίας)

Νανοεκτυπωτική λιθογραφία (NIL)

<u>Θερμική λιθογραφία NIL</u>

<u>المار</u>

Νανοεκτυπωτική λιθογραφία

Μαζική παραγωγή πολυμερικής μήτρας

Εργαστηριακή επιβεβαίωση

Εργαστηριακές δοκιμές αποτύπωσης

Μήτρες προς δοκιμή

- Μήτρα 1 (μικροδομές ~10 μm)-πολυμερική
- Μήτρα 2 (νανοδομές 500-600 nm)-μεταλλική Ni
- ✓ Μήτρα 3 -PDMS

Μήτρα 1

- 15s hot pressing, 190 °C, 76 bar- επιτυχής αποτύπωση μήτρας, δεν καταστράφηκε το χαρτί στην επιφάνεια, επιτυχές πρεσάρισμα
- 30s hot pressing, 190 °C, 76 bar- επιτυχής αποτύπωση μήτρας, επιτυχής αποτύπωση μήτρας, δεν καταστράφηκε το χαρτί στην επιφάνεια, επιτυχές πρεσάρισμα
- 60s hot pressing, 190 °C, 76 bar, επιτυχής αποτύπωση μήτραςκαταστράφηκε το χαρτί στην επιφάνεια- ξεκόλλησε

Μήτρα 2

- 1. 30s hot pressing, 190 °C, 76 bar σε λευκό χαρτί
- 30s hot pressing, 190 °C, 76 bar σε σκούρο χαρτί (για να φαίνεται καλύτερα η αντίθεση με το imprint)

Μήτρα 3

Η PDMS μήτρα δε δοκιμάστηκε λόγω μεγάλου πάχους κ πιθανώς να κολλούσε στην πλάκα

Εργαστηριακές δοκιμές αποτύπωσης

Επίδειξη της υδρόφοβης ιδιότητας της προς χρήση μήτρας

Εμποτισμένο σε MF φύλλο χαρτί που θα επιστρωθεί με τη μήτρα στη σανίδα με πρεσάρισμα υπό κατάλληλη θερμοκρασία και πίεση

Πρεσάρισμα και νανοαποτύπωση του εμποτισμένου χαρτιού στην επιφάνεια της σανίδας

Αποτυπωμένο Χαρτί και μήτρα μετά ακριβώς από το πρεσάρισμα -Δεν παρατηρείται καταστροφή τόσο της μήτρας όσο και του χαρτιού

Νανοαποτυπωμένες σανίδες

Εργαστηριακές δοκιμές αποτύπωσης

• Μήτρες: Flex και ODC

Διάμετρος πυλώνων	Περίοδος μεταξύ πυλώνων	Ύψος πυλώνων
8-10 μm	20-25 μm	10-15 μm

Διαφορά μεταξύ των μητρών: Υλικό Κατασκευής -Εξέταση ικανότητας αποτύπωσης

- Συνθήκες Nanoimprint
- 30 s, 190 °C, 76-77 bar

Φόρμουλες- Κατασκευή Σανίδων

- Reference
- NCS 0.3% synthesis (NC* reinforced)
- NCS 0.3% glue mix (NC reinforced)
- NCS 0.15% Glue mix (NC reinforced)
 - * NC: Nanocellulose

Εργαστηριακές δοκιμές αποτύπωσης

Χαρακτηρισμός επιφανειών

- Μετρήσεις γωνίας επαφής με νερό Water Contact angle measurements (WCA)
- Οπτικό Μικροσκόπιο
- Ηλεκτρονικό Μικροσκόπιο (SEM)
- Αντιβακτηριακές ιδιότητες έναντι των αρνητικών κατά gram E.Coli και των θετικών κατά gram S. aureus

Μετρήσεις Γωνίας επαφής με το νερό (WCA)

Ossila Goniometer

• Εικόνες από γωνιόμετρο

Γωνία επαφής σε μη νανοαποτυπωμένη σανίδα (Reference)

After nanoimprint

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

Γωνία επαφής σε νανοαποτυπωμένη σανίδα

Χαρακτηρισμός επιφανειών

Contact angle measurements

Type of Boards	Contact Angle , CA (°)
Non imprinted	56.55
1F	89.31
1_ODC	57.15
2F	82.08
2_ODC	88.78
3F	78.87
3_ODC	79.33
4F	86.87
4_ODC	85.36
5F	84.96
5_ODC	83.08
6F	59.13
6_ODC	85.01
7F	82.81
7_ODC	77.08

 Γωνίες επαφής των σανίδων πριν και μετά το nanoimprint με τις μήτρες F και ODC

 Η παρουσία των μικροκολώνων στην επιφάνεια της σανίδας αυξάνει εμφανώς την υδροφοβικότητα των σανίδων

Οπτικό Μικροσκόπιο

- Οι σανίδες αρχικά παρατηρήθηκαν στο οπτικό μικροσκόπιο για την επιβεβαίωση της επιτυχούς αποτύπωσης των δομών στην επιφάνεια των σανίδων
- Οι εικόνες επιβεβαιώνουν την επιτυχή και κατά κύριο
 λόγο ομοιογενή αποτύπωση των δομών στην
 επιφάνεια των σανίδων

Μήτρα Flex

ARISTOTLE

OF THESSALONIKI

Χαρακτηρισμός επιφανειών

1F 2F 3F 5F 6F 4F Ομοιογενής και επιτυχής <u>Όπου:</u> a)zoomed non-imprinted board surface αποτύπωση των δομών στις b) zoomed imprinted board surface σανίδες c) imprinted board surface in 10x Μερική καταστροφή των δομών magnification σε κάποιες σανίδες

Μήτρα ODC

70DC

Χαρακτηρισμός επιφανειών

 Ομοιογενής διασπορά της ρητίνης MF στην επιφάνεια της σανίδας

σανίδας

SEM

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

3ODC: Nanoimprinted Board Surface-Tilted 45°

Ομοιογενής εκτύπωση των μικροδομών στην επιφάνεια της σανίδας
 Μερική καταστροφή σε κάποιες δομές (2^η χρήση της μήτρας)

Χαρακτηρισμός επιφανειών

A R I S T O T L E U N I V E R S I T Y OF THESSALONIKI

4F: Nanoimprinted Board Surface-Tilted 45°

Μικροκολώνες ύψους ~9.2 μm

50DC: Nanoimprinted Board Surface

• Μικροκολώνες ύψους ~10 μm

Αντιβακτηριακή μελέτη

- Η εκτυπωμένη επιφάνεια των σανίδων θα μελετηθεί έναντι των βακτηρίων E.coli (gram negative) και S. aureus (gram positive)
- Εμποτισμένα χαρτιά MF και MF-Nanocellulose, δόθηκαν στη Nanotypos για nanoimprint
- Τα nanoimprinted χαρτιά (με τα οποία γίνεται το lamination των σανίδων), θα εξεταστούν ως προς τις αντιβακτηριακές τους ιδιότητες

• Δείγματα προς μελέτη

	Δείγμα	Περιγραφή
1	Ref	Non-Imprinted paper
2	10 µm- 6	Nanoimprinted paper, 10 µm pillars
3	10 µm- 8	Nanoimprinted paper, 10 µm pillars
4	BSi-6	Nanoimprinted paper, black silicon topography
5	BSi-8	Nanoimprinted paper, black silicon topography

Ευχαριστίες

Η εργασία υλοποιείται στο πλαίσιο της Δράσης «Ειδικές Δράσεις «Υδατοκαλλιέργειες» - «Βιομηχανικά Υλικά» -«Ανοιχτή Καινοτομία στον Πολιτισμό» που συγχρηματοδοτείται από το Ευρωπαϊκό Ταμείο Περιφερειακής Ανάπτυξης (ΕΤΠΑ) της Ευρωπαϊκής Ένωσης και εθνικούς πόρους μέσω του Ε.Π. Ανταγωνιστικότητα, Επιχειρηματικότητα & Καινοτομία (ΕΠΑνΕΚ 2014-2020) (κωδικός έργου: Τ6ΥΒΠ-00341)

www.nanotypos.com

nikos@nanotypos.com

